Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 910
Filter
Add filters

Document Type
Year range
1.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20245051

ABSTRACT

mRNA is a new class of drugs that has the potential to revolutionize the treatment of brain tumors. Thanks to the COVID-19 mRNA vaccines and numerous therapy-based clinical trials, it is now clear that lipid nanoparticles (LNPs) are a clinically viable means to deliver RNA therapeutics. However, LNP-mediated mRNA delivery to brain tumors remains elusive. Over the past decade, numerous studies have shown that tumor cells communicate with each other via small extracellular vesicles, which are around 100 nm in diameter and consist of lipid bilayer membrane similar to synthetic lipidbased nanocarriers. We hypothesized that rationally designed LNPs based on extracellular vesicle mimicry would enable efficient delivery of RNA therapeutics to brain tumors without undue toxicity. We synthesized LNPs using four components similar to the formulation used in the mRNA COVID19 vaccines (Moderna and Pfizer): ionizable lipid, cholesterol, helper lipid and polyethylene glycol (PEG)-lipid. For the in vitro screen, we tested ten classes of helper lipids based on their abundance in extracellular vesicle membranes, commercial availability, and large-scale production feasibility while keeping rest of the LNP components unchanged. The transfection kinetics of GFP mRNA encapsulated in LNPs and doped with 16 mol% of helper lipids was tested using GL261, U87 and SIM-A9 cell lines. Several LNP formations resulted in stable transfection (upto 5 days) of GFP mRNA in all the cell lines tested in vitro. The successful LNP candidates (enabling >80% transfection efficacy) were then tested in vivo to deliver luciferase mRNA to brain tumors via intrathecal administration in a syngeneic glioblastoma (GBM) mouse model, which confirmed luciferase expression in brain tumors in the cortex. LNPs were then tested to deliver Cre recombinase mRNA in syngeneic GBM mouse model genetically modified to express tdTomato under LoxP marker cassette that enabled identification of LNP targeted cells. mRNA was successfully delivered to tumor cells (70-80% transfected) and a range of different cells in the tumor microenvironment, including tumor-associated macrophages (80-90% transfected), neurons (31- 40% transfected), neural stem cells (39-62% transfected), oligodendrocytes (70-80% transfected) and astrocytes (44-76% transfected). Then, LNP formulations were assessed for delivering Cas9 mRNA and CD81 sgRNA (model protein) in murine syngeneic GBM model to enable gene editing in brain tumor cells. Sanger sequencing showed that CRISPR-Cas9 editing was successful in ~94% of brain tumor cells in vivo. In conclusion, we have developed a library of safe LNPs that can transfect GBM cells in vivo with high efficacy. This technology can potentially be used to develop novel mRNA therapies for GBM by delivering single or multiple mRNAs and holds great potential as a tool to study brain tumor biology.

2.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20244991

ABSTRACT

With the success of mRNA vaccines during the COVID-19 pandemic and CAR T-cell therapies in clinical trials, there is growing opportunity for immunotherapies in the treatment of many types of cancers. Lentiviral vectors have proven effective at delivery of genetic material or gene editing technology for ex vivo processing, but the benefits and promise of Adeno-associated virus (AAV) and mRNA tools for in vivo immunotherapy have garnered recent interest. Here we describe complete synthetic solutions for immuno-oncology research programs using either mRNA-vaccines or virus-mediated cell and gene engineering. These solutions optimize workflows to minimize screening time while maximizing successful research results through: (1) Efficiency in lentiviral packaging with versatility in titer options for high-quality particles. (2) A highthroughput viral packaging process to enable rapid downstream screening. (3) Proprietary plasmid synthesis and preparation techniques to maintain ITR integrity through AAV packaging and improve gene delivery. (4) Rapid synthesis, in vitro transcription, and novel sequencing of mRNA constructs for complete characterization of critical components such as the polyA tail. The reported research demonstrates a streamlined approach that improves data quality through innovative synthesis and sequencing methodologies as compared to current standard practices.

3.
Advanced Therapeutics ; 6(5) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20244710

ABSTRACT

Delivery of self-amplifying mRNA (SAM) has high potential for infectious disease vaccination due to its self-adjuvanting and dose-sparing properties. Yet a challenge is the susceptibility of SAM to degradation and the need for SAM to reach the cytosol fully intact to enable self-amplification. Lipid nanoparticles are successfully deployed at incredible speed for mRNA vaccination, but aspects such as cold storage, manufacturing, efficiency of delivery, and the therapeutic window can benefit from further improvement. To investigate alternatives to lipid nanoparticles, a class of >200 biodegradable end-capped lipophilic poly(beta-amino ester)s (PBAEs) that enable efficient delivery of SAM in vitro and in vivo as assessed by measuring expression of SAM encoding reporter proteins is developed. The ability of these polymers to deliver SAM intramuscularly in mice is evaluated, and a polymer-based formulation that yields up to 37-fold higher intramuscular (IM) expression of SAM compared to injected naked SAM is identified. Using the same nanoparticle formulation to deliver a SAM encoding rabies virus glycoprotein, the vaccine elicits superior immunogenicity compared to naked SAM delivery, leading to seroconversion in mice at low RNA injection doses. These biodegradable nanomaterials may be useful in the development of next-generation RNA vaccines for infectious diseases.Copyright © 2023 The Authors. Advanced Therapeutics published by Wiley-VCH GmbH.

4.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243306

ABSTRACT

CBD, an FDA approved drug for epilepsy, may have therapeutic potential for other diseases and is currently being tested for efficacy in cancer-related clinical trials. As the literature about CBD, especially in vitro reports, is often contradictory, increasing our understanding of its specific action on a molecular level will allow to determine whether CBD can become a useful therapy or exacerbates specific cancers in a context-dependent manner. Due to its relative lipophilicity, CBD is challenging to dispense at therapeutic concentrations;therefore, one goal is to identify cannabinoid congeners with greater efficacy and reduced drug delivery challenges. We recently showed that CBD activates interferons as a mechanism of inhibiting SARS-CoV-2 replication in lung carcinoma cells. As factors produced by the innate immune system, interferons have been implicated in both pro-survival and growth arrest and apoptosis signaling in cancer. Here we show that CBD induces interferon production and interferon stimulated genes (ISGs) through a mechanism involving NRF2 and MAVS in lung carcinoma cells. We also show that CBDV, which differs from CBD by 2 fewer aliphatic tail carbons, has limited potency, suggesting that CBD specifically interacts with one or more cellular proteins rather than having a non-specific effect. We also identified other CBD-related cannabinoids that are more effective at inducing ISGs. Taken together, these results characterize a novel mechanism by which CBD activates the innate immune system in lung cancer cells and identify related cannabinoids that have possible therapeutic potential in cancer treatment.

5.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243277

ABSTRACT

Glioblastoma is an extremely aggressive and difficult cancer to treat, which may partly be due to its limited ability to induce T-cell responses. However, combining viral vector vaccines with other therapies to generate tumor-specific T cells may provide a meaningful benefit to patients. Here, we investigated whether heterologous prime-boost vaccination with chimpanzee-derived adenoviral vector ChAdOx1 and modified vaccinia Ankara (MVA) vaccines could generate therapeutically effective CD8+ T-cell responses against a model antigen P1A, a mouse homolog of human tumorassociated Melanoma Antigen GenE (MAGE)-type antigens, expressed by a BGL-1 mouse glioblastoma cell line. We demonstrated that heterologous prime-boost vaccination with ChAdOx1/MVA vaccines targeting P1A generated a high magnitude of CD8+ T cells specific for the P1A35-43 epitope presented by the MHC class I molecule H-2Ld . Prophylactic vaccination with ChAdOx1/MVA-P1A significantly prolonged the survival of syngeneic mice subcutaneously challenged with P1A-expressing BGL-1 tumors. Furthermore, different vaccination schedules significantly impact the magnitude of antigen-specific CD8+ T-cell responses and may impact protective efficacy. However, the substantial induction of myeloid-derived suppressor cells (MDSCs) by this tumor model presents a significant challenge in the therapeutic setting. Future work will investigate the efficacy of this vaccination strategy on intracranial P1A-expressing BGL-1 models.

6.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243104

ABSTRACT

Genotypic definition of monogenic inborn errors of immunity (IEIs) continues to accelerate with broader access to next generation sequencing, underscoring this aggregated group of disorders as a major health burden impacting both civilian and military populations. At an estimated prevalence of 1 in 1200 individuals, IEIs affect ~8,000 patients within the Military Health System (MHS). Despite access to targeted gene/exome panels at military treatment facilities, most affected patients never receive a definitive genetic diagnosis that would significantly improve clinical care. To address this gap, we established the first registry of IEI patients within the MHS with the goal of identifying known and novel pathogenic genetic defects to increase diagnosis rates and enhance clinical care. Using the registry, a research protocol was opened in July 2022. Since July we have enrolled 75 IEI patients encompassing a breadth of phenotypes including severe and recurrent infections, bone marrow failure, autoimmunity/autoinflammation, atopic disease, and malignancy. Enrolled patients provide blood and bone marrow samples for whole genome, ultra-deep targeted panel and comprehensive transcriptome sequencing, plus cryopreservation of peripheral blood mononuclear cells for future functional studies. We are also implementing and developing analytical methods for identifying and interrogating non-coding and structural variants. Suspected pathogenic variants are adjudicated by a clinical molecular geneticist using state-of-the-art analysis pipelines. These analyses subsequently inform in vitro experiments to validate causative mutations using cell reporter systems and primary patient cells. Clinical variant validation and return of genetic results are planned with genetic counseling provided. As a proof of principle, this integrated genetic evaluation pipeline revealed a novel, candidate TLR7 nonsense variant in two adolescent brothers who both endured critical COVID-19 pneumonia, requiring mechanical ventilation and extracorporeal membrane oxygenation. Our protocol is therefore poised to greatly enrich clinical genetics resources available in the MHS for IEI patients, contributing to better diagnosis rates, informed family counseling, and targeted treatments that collectively improve the health and readiness of the military community. Moreover, our efforts should yield new mechanistic insights on immune pathogenesis for a broad variety of known and novel IEIs.Copyright © 2023 Elsevier Inc.

7.
American Journal of Reproductive Immunology ; 89(Supplement 1):53-54, 2023.
Article in English | EMBASE | ID: covidwho-20242986

ABSTRACT

Problem: Several large studies have demonstrated that COVID-19 pregnant individuals are at a significant risk for severe disease and adverse pregnancy outcomes. The mechanisms underlying these phenomena remain to be elucidated and are the focus of our project. Although fetal and placental infection is rare, placental abnormalities and adverse pregnancy outcomes associated with placental dysfunction in COVID-19 cases have been widely reported. In particular, placental thrombosis and lesions consistent with maternal vascular malperfusion (MVM) of the placenta are common in individuals with COVID-19. Since thrombotic complications have been associated with COVID-19, it is not surprising that pregnant individuals with COVID- 19 are at risk for placental thrombosis. Method of Study: Placentas were evaluated histologically. Extracellular vesicles were isolated by serial centrifugation. Result(s): Adverse pregnancy outcomes associated with these placental lesions, including hypertensive disorders of pregnancy (gestational hypertension and preeclampsia), small for gestational age (SGA, birthweight < 10th percentile for gestational age), and preterm birth (PTB, < 37 weeks) are significantly increased among pregnant individuals with COVID-19. Placental infection with SARSCoV- 2 is uncommon, but multiple inflammatory and metabolic factors are likely to affect the placenta, including circulating extracellular vesicles (EVs) derived from various organs that have been associated with COVID-19 pathology and disease severity.We have analyzed over 500 placentas from COVID-19 pregnancies and found marked changes in placental morphology, characterized by abnormal maternal and fetal vessels, intervillous thrombi, and fibrin deposition, even in the face of mild or asymptomatic disease. We detected increased levels of small EVs in maternal serum from COVID-19 cases compared to controls and increased levels of mitochondrial DNA in EVs from COVID-19 cases. In in vitro experiments, we found increased oxidative stress in uterine endothelial cells and primary trophoblasts. Syncytialization of trophoblast cells following exposure to EVs from pregnant COVID-19 patients was markedly reduced. RNAseq of trophoblast cells exposed to EVs from pregnant COVID-19 patients revealed disruption of multiple pathways related to mitochondria function, oxidative stress, coagulation defects, and inflammation. Timing of infection during pregnancy (first, second, and third trimester) altered EV size distribution, cargo content, and functional consequences of trophoblast EV exposure. Conclusion(s): Our studies show that COVID-19 infection during pregnancy has profound effects on placenta morphology and function. It remains to be determined what the long-term consequences are on the offspring.

8.
Nieren- und Hochdruckkrankheiten ; 52(4):134-135, 2023.
Article in English | EMBASE | ID: covidwho-20241899

ABSTRACT

Objective: COVID-19 has emerged as a significant global health crisis causing devastating effects on world population accounting for over 6 million deaths worldwide. Although acute RTI is the prevalent cause of morbidity, kidney outcomes centered on a spectrum of AKI have evolved over the course of the pandemic. Especially the emerging variants have posed a daunting challenge to the scientific communities, prompting an urging requirement for global contributions in understanding the viral dynamics. In addition to canonical genes, several subgroup- specific accessory genes are located between the S and E genes of coronaviruses regarding which little is known. Previous studies have shown that accessory proteins (aps) in viruses function as viroporins that regulate viral infection, propagation and egress [1]. In this study we attempted to characterize the function of aps of coronavirus variants as ion channels. Furthermore, we also probed the interaction of ap4 with the host system. Method(s): Serial passaging (selection pressure), growth kinetics, confocal imaging, genome sequence analysis and proteomics were performed in Huh-7, MRC5 cells and/or human monocyte derived macrophages. Potassium uptake assay was performed in a Saccharo myces cerevisiae strain, which lacks the potassium transporters trk1 and trk2. Ion conductivity experiments were performed in Xenopus laevis oocytes using Two Electrode Voltage Clamp (TEVC) method. Result(s): Serial passaging demonstrated the acquisition of several frameshift mutations in ORF4 resulting in C-terminally truncated protein versions (ap4 and ap4a) and indicate a strong selection pressure against retaining a complete ORF4 in vitro. Growth kinetics in primary cells illustrated a reduction of viral titers when the full-length ap4 was expressed compared to the C-terminally truncated protein ap4a. Confocal imaging showed that ap4 and ap4a are not exclusively located in a single cellular compartment. Potassium uptake assay in yeast and TEVC analyses in Xenopus oocytes showed that ap4 and ap4a act as a weak K+ selective ion channel. In addition, accessory proteins of other virus variants also elicited microampere range of currents. Conclusion(s): Our study provides the first evidence that ap4 and other accessory proteins of coronavirus variants act as viroporins. Future studies are aimed at demonstrating the role of ap4 during the viral life cycle by modulating ion homeostasis of host cell in vivo (interacting proteins obtained from proteomic studies) and thereby serve as a tool for potential drug target.

9.
Journal of Population Therapeutics and Clinical Pharmacology ; 30(8):e78-e86, 2023.
Article in English | EMBASE | ID: covidwho-20241555

ABSTRACT

Spike protein is a receptor protein that has e role in the entry step of SARS-CoV2. This protein will bind to the ACE2 receptor in the human body and activate TMPRSS2. Inhibition of this protein will prevent the binding of the virus to host cells to spread the infection. This study aims to identify the activity of bioactive compounds of Merremia mammosa (Lour) tuber obtained from LC-MS/MS QTOF analysis of a previous study against the Spike protein of SARS-CoV2 using molecular docking and ADMET analysis. Molecular docking was conducted using SARS-CoV2 spike protein (PDB id. 6M0J) using Maestro Schrodinger software. Results showed that from 206 compounds there are 8 compounds of Merremia mammosa (Lour) that have lower predictive binding energies than standard drugs arbidol, hydroxychloroquine, and chloroquine. Result(s): 206 compounds of Merremia mammosa (Lour) tuber were successfully docked, there were 8 compounds that have docking scores more negative than standard drugs. It indicates that 8 compounds are more active than the positive controls. ADMET study revealed all of those potential ligands had the possibility to be developed as drugs. Conclusion(s): Molecular docking simulations were successfully utilized to identify the potential compounds from Merremia mammosa (Lour) tuber with the activity as an inhibitor for spike protein of SARS-CoV2. Further in vitro assay and purification are needed for future research.Copyright © 2021 Muslim OT et al.

10.
Current Nutrition and Food Science ; 19(6):602-614, 2023.
Article in English | EMBASE | ID: covidwho-20241090

ABSTRACT

In addition to the classical functions of the musculoskeletal system and calcium homeostasis, the function of vitamin D as an immune modulator is well established. The vitamin D receptors and enzymes that metabolize vitamin D are ubiquitously expressed in most cells in the body, including T and B lymphocytes, antigen-presenting cells, monocytes, macrophages and natural killer cells that trigger immune and antimicrobial responses. Many in vitro and in vivo studies revealed that vitamin D promotes tolerogenic immunological action and immune modulation. Vitamin D adequacy positively influences the expression and release of antimicrobial peptides, such as cathelicidin, defensin, and anti-inflammatory cytokines, and reduces the expression of proinflammatory cytokines. Evidence suggestss that vitamin D's protective immunogenic actions reduce the risk, complications, and death from COVID-19. On the contrary, vitamin D deficiency worsened the clinical outcomes of viral respiratory diseases and the COVID-19-related cytokine storm, acute respiratory distress syndrome, and death. The study revealed the need for more preclinical studies and focused on well-designed clinical trials with adequate sizes to understand the role of vitamin D on the pathophysiology of immune disorders and mechanisms of subduing microbial infections, including COVID-19.Copyright © 2023 Bentham Science Publishers.

11.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20240620

ABSTRACT

RAG mutations cause various phenotypes: SCID, Omenn syndrome (OS), leaky SCID (LS) and combined immunodeficiency (CID). We had previously reported autoantibodies targeting IFN-alpha, IFN-omega in patients with RAG deficiency. However, how the presence of such antibodies correlated with the severity of the clinical phenotype and with the recombination activity of the mutant proteins was unknown. To address this, we have studied anti-cytokine antibodies in 118 patients with RAG defects (SCID, n = 28;OS, n = 29;LS, n = 29;CID, n = 32), and in 42 controls (protocols NCT03394053 and NCT03610802). RAG mutant proteins associated with CID and LS retained 35.6 +/- 4.3 (mean +/- SE) and 29.8 +/- 5.1% recombination activity respectively, compared to wildtype protein, which was significantly higher than the recombination activity of the mutant RAG proteins associated with OS (4.1 +/- 1.5%) and SCID (5.7 +/- 2.1%) (p < 0.0001). Among 32 CID patients, 24 tested positive for anti-IFN-alpha and 21 for anti-IFN-omega antibodies. Among 29 LS patients, 15 had high levels of anti-IFN-alpha and 13 of anti-IFN-omega antibodies. A minority of the CID and LS patients had also high levels of anti-IFN-beta and anti-IL-22 antibodies. By contrast, none of the OS patients tested positive for anti-cytokine antibodies. High levels of anti-IFN-alpha and anti-IFN-omega antibodies correlated with their neutralizing activity as demonstrated in vitro by analysis of STAT1 phosphorylation upon stimulation of healthy donor monocytes in the presence of the appropriate cytokine and patient's or control plasma. Severe viral infections were recorded in 26/41 patients with CID and LS who tested positive and in 7/20 who tested negative for anti-IFN-alpha and/or anti-IFN-omega antibodies (p <0.05). Among those with anti-IFN antibodies, EBV (n = 8), CMV (n = 6), HSV (n = 5), VZV (n = 4) and adenovirus (n = 4) infections were more common. Two patients had COVID-19, which was fatal in one. Presence of the rubella virus was documented in 5 patients with anti-type I IFN antibodies. These results demonstrate that high levels of neutralizing anti-IFN-alpha and anti-IFN-omega antibodies are common in patients with RAG mutations manifesting as CID and LS, but not in those with OS, and that their presence is associated with a high risk of serious viral infections.Copyright © 2023 Elsevier Inc.

12.
Polycyclic Aromatic Compounds ; : 1-25, 2023.
Article in English | Academic Search Complete | ID: covidwho-20240242

ABSTRACT

The exocyclic double bonded α-tetralone condensate viz. (2E)-2-(4-propoxybenzylidene)-3,4-dihydro-1(2H)-naphthalene-1-one was synthesized by the Claisen–Schmidt reaction between α-Tetralone and 4-propoxybenzaldehyde in an alkaline medium. A slow evaporation technique was used to collect the single crystals. Researchers examined the detailed information provided by spectral studies. The inter- and intra-molecular interactions of the compound were identified using the single-crystal XRD investigation. Charge transfer inside organic molecules was used to calculate HOMO and LUMO energy values. In addition, MEP, NBO, NLO, topological charge distribution, and Mulliken population studies were performed for this compound. The Hirschfeld surface study showed that nonpolar or weakly polar interactions significantly contributed to the packing forces for molecules. Then, it was tested for its antioxidant, antidiabetic, and anti-inflammatory properties. The 6yb7 protein and the (2E)-2-(4-propoxybenzylidene)-3,4-dihydro-2H-naphthalen-1-one (PBDN) ligand were docked in molecular docking research.Crystal growth and spectral studies have been performed on (2E)-2-(4-propoxybenzylidene)-3,4-dihydro-2H-naphthalen-1-one (PBDN).Simulation studies were discussed.The compound PBDN has potential anti-inflammatory and anti-diabetic properties. In-silico method reveals that the PBDN is a moderate ligand for an unliganded active site on COVID-19's main protease (PDB code: 6yb7). [ FROM AUTHOR] Copyright of Polycyclic Aromatic Compounds is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

13.
Indonesian Journal of Cancer Chemoprevention ; 13(3):195-206, 2022.
Article in English | CAB Abstracts | ID: covidwho-20239622

ABSTRACT

COVID-19 is an infectious disease caused by Severe Acute Respiratory Syndrome (SARS-CoV-2), causing a global health emergency as a pandemic disease. The lack of certain drug molecules or treatment strategies to fight this disease makes it worse. Therefore, effective drug molecules are needed to fight COVID-19. Non Structural Protein (NSP5) or called Main Protease (Mpro) of SARS CoV 2, a key component of this viral replication, is considered a key target for anti-COVID-19 drug development. The purpose of this study is to determine whether the compounds in the Melaleuca leucadendron L. plant such as 1,8-cineole, terpene, guaiol, linalol, a-selinenol, beta-eudesmol and P-eudesmol are predicted to have antiviral activity for COVID-19. Interaction of compounds with NSP5 with PDB code 6WNP analyzed using molecular docking with Molegro Virtual Docker. Based on binding affinity, the highest potential as an anti-viral is Terpineol with binding energy (-119.743 kcal/mol). The results of the interaction showed that terpinol has similarities in all three amino acid residues namely Cys 145, Gly 143, and Glu 166 with remdesivir and native ligand. Melaleuca leucadendron L. may represent a potential herbal treatment to act as: COVID-19 NSP5, however these findings must be validated in vitro and in vivo.

14.
Cytotherapy ; 25(6 Supplement):S72, 2023.
Article in English | EMBASE | ID: covidwho-20239522

ABSTRACT

Background & Aim: The pro-angiogenic, immunoregulatory and anti- inflammatory properties of MSCs are being exploited for the development of cellular therapies, including the treatment of graft versus host disease (GvHD), inflammatory bowel disease and COVID-19. SNBTS have developed a GMP process to bank umbilical cord MSCs (UC-MSCs) whereby we can reliably bank 100 vials of 10 million P2 UC-MSCs per cord. Each of these vials can be extensively expanded and stored for specific applications. The ultimate aim of the bank is for off-the-shelf clinical use, e.g., in GvHD or as an adjuvant therapy in Islet transplantations. Methods, Results & Conclusion(s): During process development, different basal media and supplements were screened for proliferation and MSC marker expression. Cells grown in promising media combinations were then tested for tri-lineage differentiation (identity), their chemokine/cytokine expression and T-cell inhibition (function) assessed. Medium selected for further GMP development and scale up was ultimately determined by all round performance and regulatory compliance. GMP-like UC-MSCs were shown to have immune-modulatory activity in T-cell proliferation assays at 4:1 or 16:1 ratios. Co-culture of UC-MSCs and freshly isolated leukocytes, +/- the immune activating agent LPS, show a dose dependent survival effect on leukocytes. In particular, neutrophils, which are normally very short lived in vitro demonstrated increased viability when co-cultured with UCMSCs. The survival effect was partially reproduced when UC-MSC were replaced with conditioned medium or cell lysate indicating the involvement of soluble factors. This improved neutrophil survival also correlates with results from leukocyte migration studies that demonstrate neutrophils to be the main cell type attracted to MSCs in in vitro and in vivo. Genetic modification of UC-MSC may improve their therapeutic potential. We have tested gene editing by CRISPR/Cas9 technology in primary UC-MSCS. The CXCL8 gene, highly expressed in UC-MSC, was targeted in isolates from several different donors with editing efficiencies of 78-96% observed. This translated to significant knockdown of CXCL8 protein levels in resting cells, however after stimulation levels of CXCL8 were found to be very similar in edited and non-edited UC-MSCs. This observation requires further study, but overall the results show the potential to generate future banks of primary UC-MSCS with genetically enhanced pro-angiogenic, immunoregulatory and/or anti-inflammatory activities.Copyright © 2023 International Society for Cell & Gene Therapy

15.
European Journal of Human Genetics ; 31(Supplement 1):709, 2023.
Article in English | EMBASE | ID: covidwho-20237894

ABSTRACT

Background/Objectives: Rosmarinus Officinalis L.(Rosemary) extract Carnosic acid(CA) has been investigated for its antimicrobial and antioxidative properties(1). Only limited number of publications reported the utilization of this extract in SARSCoV-2 infection. Also, the mechanistic understanding of CA remains to be determined. Our goal was to elucidate the potential role of CA in COVID19. To obtain mechanistic insight of pharmacogenomic action of CA, comprehensive in silico analyses were performed. Further in vitro experiments were done to illustrate the cytotoxicity of CA and confirm in silico findings. Method(s): CA was extracted from Rosmarinus Officinalis L. by HPLC. Stimulation assays were performed using the COVID19 samples. In silico pharmacogenomic properties of CA were performed by using SwissADME. SwissTargetPrediction tool was utilized to define the possible targets. SARS-CoV-2-interacting proteins were evaluated using STRING(2). To verify in silico findings, gene expression levels were analyzed using qPCR. Result(s): Among the top 15 SwissTargetPrediction target molecules(out of 100), Prostaglandin E synthase(PTGES) had the highest probability for CA. Among 332 proteins identified using the STRING, PGES2 was found to be interacting with the nsp7, important molecule for viral replication. The stimulation assays and gene expression analyses confirmed the viral inhibitory role of CA through PTGES pathway. Conclusion(s): To our knowledge, our work is the first to reveal the inhibitory role of CA in COVID19 through PTGES pathway. Given the crucial role of PTGES in inflammation, it is noteworthy to examine CA as potential anti-SARS-CoV2 therapeutics.

16.
Journal of Pediatric Infectious Diseases ; 2022.
Article in English | EMBASE | ID: covidwho-20236652

ABSTRACT

Objective: The factors affecting the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies from mother to newborn and the duration of seropositivity rates in these infants have not yet been clearly demonstrated. The objectives of this study were (1) to assess the levels of SARS-CoV-2 spike-specific immunoglobulin G (IgG) in women infected in the pregnancy period and newborns born to these women and (2) to search the transplacental transfer ratio of spike-specific IgG. Method(s): Seventy pregnant women with symptomatic SARS-CoV-2 infection and their newborns were prospectively followed. Anti-SARS-CoV-2 immunoassay was used for the detection of the in vitro quantitative determination of total antibodies to the SARS-CoV-2 spike protein. Discussion(s): Spike-specific IgG was demonstrated in 89.1% (44 of 46) of pregnant women infected more than 14 days before delivery and in 92.6% (43 of 44) of their newborns. Median transfer ratio of spike-specific Ig was 0.87 (interquartile range [IQR], 0.34-0.90), 1.0 (IQR, 0.9-0.29), and 0.81 (IQR, 0.02-1.0) in first trimester (n = 4), second trimester (n = 14), and third trimester (n = 28) pregnant women, respectively. Antibody transfer ratio was correlated with time elapsed from infection (p < 0.001). Peak antibody transfer ratio above 1 was observed at a median 60 to 120 days after the infection from delivery. Antibody transfer ratio was high in pregnant women infected more than 60 days before delivery (p < 0.001). Transfer ratio was significantly higher in the severe-critically symptomatic women (n = 15) than the mild-moderately symptomatic women (n = 55) (p = 0.001). At 3 months, 18 of 25 infants (72%) had spike-specific IgG. Conclusion(s): Timing from infection to delivery and severity of maternal infection are critical in assessing the antibody generation and transport. Higher antibody transfer ratio can be detected in neonates when SARS-CoV-2 infection is present for more than 60 days before birth. Maternally derived antibody can persist for 3 months after birth.Copyright © 2023. The Author(s).

17.
Cytotherapy ; 25(6 Supplement):S109, 2023.
Article in English | EMBASE | ID: covidwho-20236255

ABSTRACT

Background & Aim: Liposomes are spherical-shaped vesicles composed of one or more lipid bilayers. The ability of liposomes to encapsulate hydro- or lipophilic drugs allowed these vesicles to become a useful drug delivery system. Natural cell membranes, such as Bioxome, have newly emerged as new source of materials for molecular delivery systems. Bioxome are biocompatible and GMP-compliant liposome-like membrane that can be produced from more than 200 cell types. Bioxome self-assemble, with in-process self-loading capacity and can be loaded with a variety of therapeutic compounds. Once close to the target tissue, Bioxome naturally fuse with the cell membrane and release the inner compound. Orgenesis is interested in evaluating the potential of Bioxome as new drug delivery system for treatment of several diseases, including skin repair, local tumour or COVID19. Methods, Results & Conclusion(s): Bioxome were obtained from adipose- derived Mesenchymal Stem Cells, with a process of organic- solvent lipid extraction, followed by lyophilization and sonication assemblage. During the sonication process, Bioxome were charged or not with several cargos. Size distribution of empty Bioxome was detected by Particle Size Analyzer (NanoSight). Electron Microscopy (EM) was performed to assess Bioxome morphology. Lipid content was evaluated by electrospray ionization system. Dose response in vitro test on human lung fibroblasts treated or not with Bioxome encapsulating a specific cargo (API) against COVID19 were performed. NanoSight analysis showed that nanoparticle size in Bioxome samples ranged between 170+/-50 nm, with a concentration ranging between 109-1010+/-106 particles/mL. EM clearly showed the double phospholipid layers that composes the Bioxome. Stability study demonstrated that Bioxome are stable in size and concentration up to 90 days at +4Cdegree or even at RT. No change in size between encapsulated Bioxome with small size (~340 Da) cargo vs empty Bioxome was observed up to 30 days storage. Lipidomic analysis approach revealed that the yield of lipids and their composition are satisfactory for a therapeutic product using Bioxome. Lastly, in the in vitro model of COVID19, Bioxome encapsulating API effectively saved cells from death (20x vs untreated cells) and at lower doses of API than these of non-encapsulated cargo (0.005 microM vs 0.1 microM). Bioxome seems to be an excellent candidate for liposome mimetic tool as drug delivery system for targeting specific organs and diseases treatment.Copyright © 2023 International Society for Cell & Gene Therapy

18.
Anales de la Facultad de Medicina ; 84(1):55-62, 2023.
Article in English | EMBASE | ID: covidwho-20235816

ABSTRACT

Introduction: Currently, isolated from SARS-CoV-2 virus exceed 600 million cases in the world. Objective(s): Isolation and characterization of the SARS-CoV-2 virus causing COVID-19 at the beginning of the pandemic in Peru. Method(s): Twenty nasal and pharyngeal swab samples were isolated from SARS-CoV-2 using two cell lines, Vero ATCC CCL-81 and Vero E-6;virus identification was performed by RT-PCR and the onset of cytopathic effect (CPE) was evaluated by indirect immunofluorescence and subsequent identification by genomic sequencing. One of the most widely circulating isolates were selected and named the prototype strain (PE/B.1.1/28549/2020). Then 10 successive passages were performed on Vero ATCC CCL-81 cells to assess mutation dynamics. Result(s): Results detected 11 virus isolates by cytopathic effect, and subsequently confirmed by RT-PCR and indirect immunofluorescence. Of these, six were sequenced and identified as the lineages B.1, B.1.1, B.1.1.1, and B.1.205 according to the Pango lineage nomenclature. The prototype strain corresponded to lineage B.1.1. The analysis of the strains from the successive passages showed mutations mainly at in the spike (S) protein of the virus without variation in the identity of the lineage. Conclusion(s): Four lineages were isolated in the Vero ATCC CCL-81 cell line. Subcultures in the same cell line showed mutations in the spike protein indicating greater adaptability to the host cell and variation in pathogenicity in vitro, a behavior that allows it to have more survival success.Copyright © 2023 Anales de la Facultad de Medicina. All rights reserved.

19.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20235541

ABSTRACT

Background: Neutrophil extracellular traps (NETs) are composed of processed chromatin bound to granular and selected cytoplasmic proteins and released by neutrophils. NETs consist of smooth filaments composed of stacked nucleosomes. Fully hydrated NETs have a cloud-like appearance and occupy a space 10-15-fold larger than the volume of the cells they originate from. DNases are the enzymes that cleave extracellular DNA including NETs. Together with their protective role in microbial infections, NETs are involved in multiple pathological processes and represent key events in a variety of pathologies including cancer, autoimmunity, and cardiovascular disease. Sites of NETs concentration are dangerous for the host if the process of NETs formation becomes chronic or the mechanism of NETs removal does not work. NETosis has been linked to the development of periodontitis, cystic fibrosis, type 2 diabetes, COVID-19 or rheumatoid arthritis as well as cancer progression. Purpose(s): Thus, the destruction of NETs is of primary significance in many pathologies. In our approach, we are focusing on mimicking one of the natural mechanisms of destroying excessive NETs by delivering deoxyribonuclease I to the specific site of pathological NETs accumulation by modifying the nanoparticles using an anti-nucleosome monoclonal antibody (2C5). The antibody is specific to nucleosomes and can recognize histones in NETs. DNase I is U.S. Food and Drug Administration (FDA)-approved active component and is commonly used in therapeutic methods of modern medicine for cystic fibrosis to clear extracellular DNA fibers in the lungs and systemic lupus erythematosus. Recent findings have also shown the effectiveness of DNase I in the digestion of NETs. However, the low serum stability and fast deactivation by environmental stimuli have been considered as the limiting factors for clinical applications of DNase I, which can be overcome by its targeted specific delivery in pharmaceutical nanocarriers. Method(s): In this study, we generate NETs in vitro using human neutrophils and HL-60 cells differentiated into granulocyte-like cells. We used interleukin-8, lipopolysaccharide from E.Coli (LPS), phorbol myristate acetate (PMA), and calcium ionophore A23187 (CI) to generate the NETs. We confirmed the specificity of 2C5 toward NETs by ELISA, which showed that it binds to NETs with the specificity like that for purified nucleohistone substrate. We further utilized that feature to create two delivery systems (liposomes and micelles) for DNAse I enzyme to destroy NETs, which was confirmed by staining NETs with SYTOX Green dye and followed by flow cytometric measurements and microscopic images. Conclusion(s): Our results suggest that 2C5 could be used to identify and visualize NETs and serve as a ligand for NET-targeted diagnostics and therapies. Also, we proved that our carrier can successfully deliver DNase to NETs to provide their degradation.

20.
European Journal of Human Genetics ; 31(Supplement 1):627-628, 2023.
Article in English | EMBASE | ID: covidwho-20235387

ABSTRACT

Background/Objectives: COVID-19 still represents a lifethreatening disease in individuals with a specific genetic background. We successfully applied a new Machine Learning method on WES data to extract a set of coding variants relevant for COVID- 19 severity. We aim to identify personalized add-on therapy. Method(s): A subset of identified variants, "actionable" by repurposed drugs, were functionally tested by in vitro and in vivo experiments. Result(s): Males with either rare loss of function variants in the TLR7 gene or L412F polymorphism in the TLR3 gene benefit from IFN-gamma, which is specifically defective in activated PBMCs, restoring innate immunity. Females heterozygous for rare variants in the ADAMTS13 gene and males with D603N homozygous polymorphism in the SELP gene benefit from Caplacizumab, which reduces vWF aggregation and thrombus formation. Males with either the low-frequency gain of function variant T201M in CYP19A1 gene or with poly-Q repeats >=23 in the AR gene benefit from Letrozole, an aromatase inhibitor, which restores normal testosterone levels, reducing inflammation and which rescues male golden hamsters from severe COVID-19. Conclusion(s): By adding these commonly used drugs to standard of care of selected patients, the rate of intubation is expected to decrease consistently, especially in patients with high penetrance rare genetic markers, mitigating the effect of the pandemic with a significant impact on the healthcare system.

SELECTION OF CITATIONS
SEARCH DETAIL